
"Circular Doubly-Linked List"

Name:

CS 143
 Project 2:

In chapter seven of the textbook is a discussion of the
Java LinkedList class. On Canvas you were given a
partial implementation of a SimpleLinkedList class.
Your task is to now modify that code to turn it into a
doubly-linked circular list, to "fill out" the
implementation and, of course. to test your new
creation. A doubly-linked list is made up of nodes
that contain a reference to the previous node as well as
the next node--allowing for traversal in either
direction.

A circular doubly-linked list has the next reference of the last node refer to the first node (instead of null), and has
the previous reference of the first node refer to the last node (instead of null)--thus making a circle (a list with only
one node would have both references refer to itself).

The new class should contain all of the same public methods as in SimpleLinkedList re-written to take advantage
of the capabilities of the new construction. It should be re-written to be zero-based (i.e., theList.get(0) should return
the data in the very first node, if it exists; theList.add(0, entry) should insert the entry in the very first node, if it
exists, etc.). It should also be able to take in either negative or non-negative numbers for a position (i.e.,
theList.get(-1) should return the data in the very last node, if it exists, theList.add(-1, entry) should insert the entry
in the very last node, if it exists, etc. Also, an index beyond the size of the list should be allowed e.g., theList.get(5)
for a list of size 4 would return the same as theList.get(1)). It should also fully impement the listIterator method (and
define the corresponding inner class). In the same spirit, any method that moves linearly through the list should be
optimized so that it will start at the front or back, depending on which is closer to the index requested (e.g., if theList
has 5 elements, theList.get(1) should start looking from the front, while theList.get(3) should start looking from the
back).

You will also need to make this class implement Iterable, and it should contain as inner classes both Iterator and
ListIterator.. The Iterator should stop at the end of the list (i.e., hasNext() should return false at the "end" of the
list, although next() would still work), so that it will allow a for each loop to work; the ListIterator should continue
on unless the list is empty (i.e., hasNext() and hasPrevious()should return true on any non-empty list). Be sure to
fully implement ALL methods for these two classes--including the "optional" operations.

Finish implementing the following methods:

• addAll(Collection<? extends E> c)
• addAll(int index, Collection<? extends E> c)
• containsAll(Collection<?> c)
• equals(Object o)
• listIterator()
• listIterator(int index)
• remove(Object o)
• set(int index, E element)
• subList(int fromIndex, int toIndex)
• toArray()
• toArray(T[] a)

You may want to change, add, or even eliminate the protected "helper" methods. Many methods will require only
minor modification. Others will require more thinking (e.g. clear will need a major re-write -- you will need to make
sure ALL references in the chain are removed). You will also need to rewrite the test driver for the class to test all
the methods of the class and nested classes. This may be a command-line or GUI program--your choice. It should
test all of the methods of the class, either directly or indirectly. It is up to you how it goes about doing this. You
may use any class that makes sense as the data implementation (CircularDoublyLinkedList<String> works
nicely).

Deliverables:
Electronic:

• All .class, .jar, .html (javadocs) and .java files.
• Sample Output (as .rtf -- run the program, copy the window using <Alt|PrtScn>, paste into Paint, invert

colors (<Ctrl|Shift|I>), copy, open Wordpad, paste, save.)
• A simple test plan including explanations of any discrepancies and reasons for each test. Show actual input

and ALL values output as well as ALL expected output. Test each possible action. Save as .xls, xlsx,
.doc or .docx file

• Zip all of the above files together. Do not use rar or any archive format other than zip. Rename the file:
"<YourName>_p2.zip".

• Submit this single zip file by going to Canvas, select this class, select the Assignment tab on the left, select
the Assignment 2, select the submission tab at the top, find the file, and Submit.

Due: Monday, May 7, 2018, 10:30 a.m. (beginning of class)

	Deliverables:

	Name:

